・论著・

根尖牙乳头干细胞摄取外泌体的介导途径

高晓敏 邹晓英[△] 岳 林[△]

(北京大学口腔医学院・口腔医院,牙体牙髓科 国家口腔疾病临床医学研究中心 口腔数字化医疗技术和材料 国家工程实验室 口腔数字医学北京市重点实验室,北京 100081)

[摘 要]目的:探讨根尖牙乳头干细胞(stem cells from apical papilla, SCAP)摄取牙髓干细胞(dental pulp stem cells, DPSCs)外泌体的作用,为揭示其内吞外泌体的途径提供依据。方法:(1)采用超速离心法结合超滤法提取 DPSCs 外泌体,采用透射电镜观察法、纳米粒子示踪分析法以及 Western Blot 对其进行鉴定。(2) 采用 PKH-26 膜标 记技术标记 DPSCs 外泌体 37 ℃条件下将其与 SCAP 共培养作为阳性对照组 4 ℃条件下将其与 SCAP 共培养作为 低温处理组 同时设置阴性对照组。采用免疫荧光染色法观察不同培养温度条件下 SCAP 内红色荧光标记情况。 (3) 通过胞吞抑制方法观察 SCAP 摄取外泌体的胞吞途径 ,分别采用 10 μmol/L 氯丙嗪(chlorpromazine ,CPZ ,抑制 网格蛋白介导的胞吞途径)作为 CPZ 组、200 μmol /L 金雀异黄素(genistein,抑制小窝蛋白介导的胞吞途径)作为 Genistein 组、50 µmol /L LY294002 抑制巨胞饮(macropinocytosis) 作用作为 LY294002 组处理 SCAP 将 PKH-26 标记 的 DPSCs 外泌体与 SCAP 共培养,同时设置溶剂对照组(添加与抑制剂组等量的 DMSO),采用免疫荧光染色技术观 察 SCAP 内红色荧光标记情况和流式细胞技术分析有红色荧光标记的 SCAP 百分比。结果: (1) DPSCs 外泌体形态 呈茶托样,具有双层膜结构,粒径峰值为144 nm,能够表达肿瘤易感基因(tumor susceptibility gene、TSG)101 蛋白、 CD63 蛋白, 二者皆为外泌体标志蛋白, 符合外泌体特征。(2) 免疫荧光结果显示, 37 ℃共培养6h 后可见 SCAP 内 有大量红色荧光(PKH-26) 标记 ,而 4 ℃共培养 6 h 后 ,SCAP 内未见明显红色荧光(PKH-26) 标记。(3) 免疫荧光结 果显示胞吞抑制后 SCAP 内部红色荧光(PKH-26) 标记减少 流式结果显示阳性对照组红色荧光标记的 SCAP 占 35.0% 阴性对照组红色荧光标记的 SCAP 占 0.5% 溶剂对照组红色荧光标记的 SCAP 占 29.7% CPZ 组、Genistein 组、LY294002 组分别下降至 13.7%、16.6%、20.9%。结论: SCAP 能够摄取 DPSCs 外泌体 低温可影响该摄取过 程; SCAP 摄取外泌体主要依赖网格蛋白介导的胞吞途径、小窝蛋白介导的胞吞途径以及巨胞饮途径。

[关键词] 牙髓干细胞; 根尖牙乳头干细胞; 外泌体; 胞吞途径

[中图分类号] R329.2 [文献标志码] A [文章编号] 1671-167X(2020) 01-0043-08 doi: 10.19723/j.issn.1671-167X.2020.01.007

Mediated pathways of exosomes uptake by stem cells of apical papilla

GAO Xiao-min , ZOU Xiao-ying $^{\bigtriangleup}$, YUE $\text{Lin}^{\bigtriangleup}$

(Department of Cariology and Endodontology, Peking University School and Hospital of Stomatology & National Clinical research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology, Beijing 100081, China)

ABSTRACT Objective: To evaluate the uptake of exosomes by stem cells from apical papilla (SCAP) , thus to provide experimental basis for mechanism of the exosomes endocytosis by SCAP. Methods: (1) Exosomes of dental pulp stem cells (DPSCs) were isolated by hypercentrifugation combined with ultrafiltration method. The exosomes were identified by transmission electron microscopy , nanoparticle tracking analysis and western blot. (2) PKH-26 membrane labeling technology was used to mark the DPSCs derived exosomes. The labeled exosomes were co-cultured with SCAP at 37 °C as positive control group , and co-cultured with SCAP at 4 °C as the low-temperature treatment group , while the negative control group was set up. (3) Using clathrin-mediated endocytosis inhibitor chlorpromazine (CPZ ,10 μ mol /L) as CPZ group , caveolae-mediated endocytosis Genistein (200 μ mol/L) as Genistein group , and macropinocytosis inhibitor LY294002 (50 μ mol/L) as LY294002 group to treat the SCAP respectively. Solvent control group (DMSO group) was set. Immunofluorescence staining was used to detect the red fluorescence. Results: (1) The bilayer membrane and cup-shaped appearance of representative exosomes were observed. The peak of the size of DPSCs-derived exosomes was at 144 nm. The exosomes expressed exosomes marker proteins TSG101 and CD63 , but not GAPDH which was the cellular internal control pro-

基金项目: 国家自然科学基金(81650005,81200773) Support by the National Natural Science Foundation of China(81650005,81200773) △ Corresponding author's e-mail, zouxiaoying1125@163.com, kqlinyue@bjmu.edu.cn 网络出版时间: 2019-12-18 11: 32: 05 网络出版地址: http://kns.cnki.net/kcms/detail/11.4691.R.20191217.1520.026.html

tein. (2) Immunofluorescence staining showed that after being co-cultured at 37 $^{\circ}$ C for 6 hours , red fluorescence could be detected in SCAP but it could not be detected after being co-cultured at 4 $^{\circ}$ C for 6 hours. After endocytosis inhibition , the red fluorescence in SCAP was reduced. Flow cytometry showed that the proportion of SCAP labeled with red fluorescence in positive group was 35.0% , in negative control group was 0.5% , and in solvent control group was 29.7% , in CPZ group , Genistein group and Genistein group were reduced to 13.7% , 16.6% , and 20.9% , respectively. **Conclusion**: SCAP could uptake the DPSCs derived exosomes , and low temperature could inhibit this process. The exosomes uptake of SCAP was mediated by the clathrin endocytosis pathway , caveolae-mediated endocytosis and macropinocytosis pathway.

KEY WORDS Dental pulp stem cells; Stem cells from apical papilla; Exosome; Endocytosis

外泌体是机体内大部分细胞都能分泌的一种直 径在 30~150 nm 的微囊泡^[1]。20 世纪 80 年代发 现外泌体时 ,最初认为它是细胞为了维持自身稳定 状态向外排泄废物的途径^[2]。20 世纪 90 年代末 , Raposo 等^[3]发现 ,人和鼠来源的 B 淋巴细胞外泌体 含有组织相容复合体-II (major histocompatibility complex-II ,MHC-II)分子 ,可以诱发 T 淋巴细胞的 免疫反应 ,提示外泌体在信号传导方面具有重要意 义。2007 年 ,Valadi 等^[4] 通过体外实验研究发现 , 小鼠 MC/9 细胞来源的外泌体内含有 RNA 成分 ,能 够转运至受体细胞中表达产生蛋白质 ,并发现由于 外泌体存在膜包被 ,外泌体的 RNA 成分能够抵抗 RNA 消化酶的降解作用 这进一步说明外泌体介导 细胞间信号信息传导的重要作用。

随着组织再生工程学的发现,人们逐渐注意到 外泌体所携带的信号分子有助于干细胞的定向分 化。2016 年 Huang 等^[5] 发现,牙髓干细胞(dental pulp stem cells, DPSCs) 和骨髓间充质干细胞可以摄 取 DPSCs 外泌体,外泌体可以促进二者向成牙本质 向分化。2018 年 Xian 等^[6]的研究发现人脐带静脉 内皮细胞同样可以摄取 DPSCs 外泌体,且外泌体可 促进人脐带静脉内皮细胞的增殖、促血管生成因子 的表达以及增强其小管的形成 提示牙髓干细胞外 泌体在促进牙髓再生方面具有潜能。2014 年,Liu 等^[7]发现基质细胞衍生因子可以促进根尖牙乳头 干细胞(stem cells from apical papilla, SCAP) 的迁 移,为诱导根尖组织的干细胞进入根管内提供了新 的方案,但如何诱导 SCAP 向成牙本质向定向分化 仍是实现牙髓牙本质复合体再生的关键问题 SCAP 能否摄取 DPSCs 外泌体并利用其信号实现定向分 化尚不明确。

本研究目的是探讨 SCAP 对 DPSCs 外泌体的摄 取作用及摄取的介导途径,为揭示其内吞外泌体的 机制提供依据。

1 材料与方法

1.1 DPSCs 外泌体的提取与鉴定

1.1.1 分离培养 DPSCs、SCAP 收集北京大学口 腔医院颌面外科门诊因阻生或正畸需要而拔除的前 磨牙或第三磨牙。本研究获得北京大学口腔医院医 学伦理委员会批准(PKUSSIRB-201412020)。离体 牙纳入标准: 患者 18~25岁,牙齿完整、无龋损、无 牙髓或根尖周炎症、无牙周疾病,供者身体健康,自 愿签署知情同意书。本研究选用根尖牙乳头干细胞 供者为18岁男性左下第三磨牙、21岁女性右下第 三磨牙、22岁男性右下第三磨牙;牙髓干细胞供者 为24岁女性左下第二前磨牙、18岁男性右下第一 前磨牙、20岁女性右上第二前磨牙。于超净台中切 取离体牙根尖的牙乳头组织 使用咬骨钳钳碎患牙 并取出牙髓组织。将上述组织分别切碎至1 mm ×1 mm ×1 mm ,用 3 g/L 的 I 型胶原酶(Worthington 公 司 美国) 和4 g/L 分离酶(Sigma 公司 美国) 37 ℃ 消化 30~40 min。将消化后的细胞悬液过 70 μm 细胞筛 以获得单细胞悬液。将单细胞悬液加入6 孔板(Corning 公司,美国)中,加入含有15%(体积 分数) 胎牛血清(fetal bovine serum ,FBS)、1%(体积 分数) L-谷氨酰胺及 1% (体积分数) 青-链霉素 (Gibco 公司,美国)、88% α MEM(α minimum Eagle's medium ,Hyclone 公司,美国)的普通培养 基 置于 5% (体积分数) CO, 37 ℃ 培养。待细胞 长满至 75% 时,将原代细胞按照1:3 传代,至第 3~4 代细胞备用。

1.1.2 提取 DPSCs 外泌体 将胎牛血清在4℃条 件下 100 000×g 超速离心 12 h 以去除胎牛血清中 的外泌体。取第3代 DPSCs 细胞以1×10⁷个细胞/ 孔接种于 175 cm²培养瓶中,采用含有10%(体积分 数)胎牛血清的普通培养基培养至5 d 后,弃去上 清,更换为不含外泌体的细胞培养基继续培养2 d, 收集上清液。将收集好的上清液转移至50 mL 离心 管。以下离心步骤均在4℃条件下完成:以300×g 转速离心 10 min(除去上清液中的细胞);将上清液 转移至50 mL 洁净离心管,以2000×g 的转速离心 10 min(除去上清液中的死细胞);将上清液转移至 50 mL 洁净离心管,以 10 000 × g 的转速离心 30 min(去除上清液中的细胞碎片) 后收集上清液。采 用相对分子质量 10 000 的孔径超滤管(Millipore, sigma 公司,美国) 对离心后的上清液进行超滤浓 缩,将浓缩后的上清液加入超速离心机(Optima XPN-10,Backman 公司,美国) 配套的离心管, 100 000 × g 超速离心70 min。离心结束后,弃去上 清液 加入0.5 mL PBS 重悬沉淀 获得提取物悬液, 置于 - 80 ℃保存。

1.1.3 DPSCs 外泌体的鉴定 透射电镜观察提取 物形态: 将10 µL 提取物悬液 ,用 50 µL 2% (体积分 数) 多聚甲醛室温固定 30 min 取上述混合液 8 µL, 滴加至碳涂层铜网格上,风干10 min,再用1%(体 积分数) 醋酸双氧铀染色两次,每次6 min。将铜网 装入透射电镜(JEM-1400, JEOL 公司, 日本), 电压 设置为120 kV,观察提取物形态。粒径分布:取1 mL 提取物悬液 采用纳米粒子跟踪分析(nanoparticle tracking analysis NTA) 用于确定粒径分布。使用 纳米粒子跟踪分析仪(NS3000, Malvern 公司, 英国) 记录布朗运动下外泌体的运动轨迹,并通过 NTA 分 析软件进行分析。Western blot 检测外泌体标志蛋 白: 取 50 μL 提取物悬液 加入 20 μL 的 1% (质量 分数) Triton 裂解液,冰上裂解 30 min,超声破碎1 min。4 ℃ 12 000 r/min 离心 30 min 提取蛋白 BCA 蛋白试剂盒(Thermo Fisher 公司 美国)检测蛋白浓 度 记录结果。100 ℃ 水浴 5 min 配胶(12% SDS-PAGE .碧云天公司,中国), 15 µL 蛋白上样,蛋白 分离2h(电泳电压为125V),切胶;1.5h后蛋白转 移到 PVDF 膜(Millipore Corporation 公司,美国)上 (转膜电压为 100 V); 脱脂牛奶封闭 1 h; 加入一抗 CD63(1:500 ab68418 Abcam 公司 美国) /TSG101 (1:500,14497-I_AP, Proteintech 公司,美国)/ GAPDH(1:500,10494-1-AP,Proteintech 公司,美 国) 4 ℃ 孵育过夜;用 TBST 洗膜 3 次 ,每次 10 min; 用抗兔 IgG 抗体(1:1000,10285-1-AP, Proteintech 公司 美国) 孵育 1 h; TBST 洗膜 3 次 ,每次 10 min; 应用学发光检测试剂盒(Proteintech 公司,美国), 凝胶成像系统(Vilber Lourmat 公司,美国)曝光。

1.2 SCAP 对 DPSCs 外泌体的摄取

1.2.1 PKH-26 标记 DPSCs 外泌体 采取 PKH-26 (一种亲脂性染料,可以稳定地与细胞膜脂质区结 合并发出荧光)膜标记技术标记 DPSCs 外泌体。将 1 mL 10 mg/L(根据第 1.1.3 小节测定的蛋白浓度 稀释)的外泌体重悬液加入 1 mL 稀释液 C(Sigma 公司,美国)中,同时将 4 μL 的 PKH-26(Sigma 公 司 美国) 加入1 mL 的稀释液 C 中,将两份溶液混 合,共孵育4 min,而后加入2 mL 0.5% (质量分数) BSA 中和未结合的染液,采用 0.5% BSA 溶液中和 未标记外泌体的 PKH-26 染料作为阴性对照组。 将标记好的外泌体加入 PBS 中,100 000 × g 转速 下离心 70 min(4 ℃),弃去上清液,将沉淀用 PBS 重悬。

1.2.2 SCAP 对 DPSCs 外泌体的摄取作用 取第3 代细胞以 5 × 10³ 个细胞/孔接种于圆形盖玻片,待 细胞培养至 80% 汇合时,将第1.2.1 小节中获得的 重悬液加入 SCAP 的培养基中,分别在 37 ℃和4 ℃ 与 SCAP 共培养 6 h。6 h 后收集样本,PBS 冲洗两 遍 加入 4% (体积分数) 多聚甲醛固定液(Solabrio 公司,中国)固定 10 min,PBS 冲洗3 遍。加入含有 4',6-二氨基-2-苯基吲哚(4',6-diamino-2-phenylindole,DAPI,Sigma 公司,美国)的封片液封片,激 光共聚焦显微镜下观察 SCAP 内 PKH-26 的表达情 况。

1.3 摄取过程依赖的胞吞途径

1.3.1 分组 采用不同胞吞抑制剂分别抑制网格 蛋白依赖、小窝蛋白介导和巨胞饮依赖途径。(1) 氯丙嗪(chlorpromazine CPZ)组:采用10 μmol/L 网 格蛋白依赖胞吞途径抑制剂 CPZ 处理 SCAP。(2) Genistein组:采用200 μmol/L 小窝蛋白介导胞吞 途径抑制剂 genistein 处理 SCAP。(3) LY294002 组:采用50 μmol/L 巨胞饮依赖胞吞途径抑制剂 LY294002 处理 SCAP。(4) 溶剂对照组:采用与抑 制剂组等量的溶剂 DMSO 处理 SCAP 作为对照。

1.3.2 免疫荧光染色 取第3代细胞以5×10³个 细胞/孔接种于圆形盖玻片上,待细胞培养至80% 汇合时,按照上述分组,各组采用相应培养液预处理 SCAP 30 min(后续实验一直存在于培养液中),将 PKH-26标记好的 DPSCs外泌体(10 mg/L)加入各 组 SCAP 的培养基中。37 ℃共培养6h后收集样 本,采用 PBS冲洗3遍,加入4%(体积分数)多聚甲 醛固定液固定 10 min,PBS冲洗3遍。加入含有 DAPI 的封片液封片,激光共聚焦显微镜下观察 SCAP 内红色荧光表达。

1.3.3 流式细胞分析术 取第3代细胞以5×10⁴ 个细胞/孔接种于6孔板,待细胞培养至80%汇合 时,按照上述分组,各组采用相应培养液预处理 SCAP 30 min(后续实验一直存在于培养液中),将 PKH-26标记好的DPSCs外泌体(10 mg/L)加入各 组 SCAP的培养基中。37℃共培养6h后收集样 本 将 SCAP消化下来后 PBS 冲洗3遍,离心弃上

清液,采用0.5%(质量分数) BSA 溶液重悬细胞, 300 μm 细胞筛过滤细胞形成单细胞悬液,应用流 式细胞仪(Aria Sorp,Becton,Dickinson 公司,美 国)检测红色荧光标记的根尖牙乳头干细胞百分 比。

2 结果

2.1 人 DPSCs、SCAP 的形态特征

经酶消化法体外分离培养的人 DPSCs、根尖牙 乳头细胞生长良好,呈梭形、多角形等典型的成纤维 细胞样形态,细胞大小基本一致(图1)。原代培养 约5d后 DPSCs(图1A)、SCAP(图1C)可见克隆集 落形成,待各集落细胞逐渐汇合后可见 DPSCs(图 1B)、SCAP(图1D)排列整齐,呈漩涡状生长。

2.2 DPSCs 来源外泌体的特征

采用多步离心法结合超滤法提取细胞上清液中的外泌体、透射电镜下可以观察到 DPSCs 外泌体呈 茶托样、具有双层膜结构图(图 2A、B)。纳米粒子 示踪分析技术检测 DPSCs 外泌体粒径峰值为144 nm(图2C)。Western Blot检测 DPSCs 外泌体表达

外泌体特征标志膜结合蛋白 TSG101 和四跨膜蛋白超 家族 CD63 不表达细胞内参蛋白 GAPDH(图 2D)。

A , primary DPSCs cultured for 5 days; B , primary DPSCs cultured for 14 days; C , Primary SCAP cultured for 5 days; D , Primary SCAP cultured for 14 days.

A and B, morphologic analysis of DPSCs derived exosomes by transmission electron microscopy; C, nanoparticle tracking analysis measurement of particle size of DPSCs derived exosomes; D, detection of exosomal marker expression in DPSCs derived exosomes by Western blot.

图 2 DPSCs 外泌体的分离与鉴定结果

Figure 2 Isolation and identification results of DPSCs derived exosomes

2.3 SCAP 对 DPSCs 外泌体的摄取 将 PKH-26 标记后的 DPSCs 外泌体与 SCAP 共培养后采用激光共聚焦显微镜观察 SCAP 对 DPSCs 外泌体的摄取作用,可见蓝色标记的是细

胞核。阳性组在 37 ℃条件下共培养 6 h 后可见 大量红色荧光(PKH-26)围绕在细胞核周围(图 3),而 4 ℃条件下共培养 6 h 后 SCAP 则未见明 显红色荧光(PKH-26)标记(图3),同时未添加 外泌体的阴性对照组未见红色荧光(PKH-26)标记(图3)。

DAPI,4' 6-diamidino-2-phenylindole.

图 3 SCAP 对 DPSCs 外泌体的摄取作用 Figure 3 Uptake of DPSCs derived exosomes by SCAP

2.4 SCAP 摄取 DPSCs 外泌体的介导途径

为考察 SCAP 摄取外泌体的介导途径,本研究 设计了三种胞吞抑制剂 CPZ、Genistein 和 LY294002,抑制 SCAP 的胞吞过程后进一步观察不 同的胞吞途径对 SCAP 摄取外泌体的影响,代表性 染色结果见图4。溶剂对照组 SCAP 细胞核周围存 在大量红色荧光(PKH-26)标记(图4),与阳性组 (图3)基本一致,而采用胞吞抑制剂对 SCAP 进行 处理后,将 PKH-26 标记的 DPSCs 外泌体与 SCAP 共培养6h后,CPZ 组、Genistein 组细胞核周围红色 荧光(PKH-26)标记量明显下降,LY294002 组细胞 核周围红色荧光(PKH-26)标记量有少量下降(图 4)。流式细胞分析结果(图5)显示阳性对照组中摄 取外泌体的 SCAP 占 35%,阴性对照组中有红色荧 光标记的 SCAP 占比 0.5%。溶剂对照组中有红色 荧光标记的 SCAP 占比 29.7%,而 CPZ、Genistein、 LY294002 处理 SCAP 后,红色荧光标记的 SCAP 占 比分别下降至 13.7%、16.6%、20.9%,与上述免疫 荧光染色的结果趋势是一致的。

3 讨论

采用酶消化法分别从根尖牙乳头组织、牙髓组 织中提取培养 SCAP、DPSCs,经刘敬一等^[8]采用流 式细胞鉴定显示,分离培养的 DPSCs、SCAP 均表达 间充质干细胞特征标志 STRO-1、CD146、CD105、 CD90 不表达血管内皮细胞标志 CD45 符合间充质 干细胞特征。

3.1 DPSCs 外泌体的特征

本研究经超速离心法结合超滤法于 DPSCs 上 清液获得的提取物 符合国际细胞外囊泡学会 2014 年指导性声明中的外泌体特征^[9]。

对于外泌体粒径分布 本研究通过纳米粒子跟踪 分析法显示 DPSCs 上清液提取物直径峰值为 144 nm。2015 年 Pivoraite 等^[10] 采用动态激光散射技术 对脱落乳牙 DPSCs 外泌体的直径观察发现 其直径在 30~70 nm 范围内。Xian 等^[6] 采用纳米粒子跟踪分 析法对 DPSCs 外泌体的粒径分布检测结果为 87~ 143 nm 与本研究结果相近。外泌体尺寸间的差异可 能与其来源的细胞以及观察方法不同有关。Sokolova 等^[11]通过对人胚肾细胞 293T、内皮克隆形成细胞、间 充质干细胞三种不同类型的细胞的外泌体分别采用 纳米粒子分析技术和动态激光散射技术分析粒径分 布结果发现采用相同技术分析不同细胞的外泌体直 径之间存在差异;对同一种细胞来源的外泌体采用不 同方法分析其粒径分布,结果也不同,本研究采用的 是纳米粒子跟踪分析技术,它是分析颗粒在溶液中动 态运动过程的流体动力学直径,粒径较大的颗粒会对 检测结果产生较大的影响,会造成粒径结果略偏大。

DMSO , dimethyl sulfoxide; CPZ , chlorpromazine; DAPI ,4' &-diamidino-2-phenylindole.

图 4 胞吞抑制剂处理后 SCAP 对 DPSCs 外泌体的摄取作用

Figure 4 Uptake of DPSCs derived exosomes by SCAP with the treatment of different endocytosis inhibitors

3.2 SCAP 对外泌体的摄取作用 本研究观察到将 DPSCs 外泌体与 SCAP 在

37 ℃共培养6h后 SCAP 能够摄取 DPSCs 外泌体, 而在4 ℃培养条件下 SCAP 则没有摄取外泌体。虽

然4 ℃培养条件下 DPSCs 处于较低代谢状态,但低 温抑制该摄取提示 SCAP 对 DPSCs 的摄取是一个主 动的过程,而非外泌体随机扩散进入 SCAP。2012 年,Tian 等^[12]采用实时荧光显微镜对 PC12 细胞对 十八烷基罗丹明 B 氯化物(R18,一种亲脂性阳离子 染料,可以作为膜探针标记胞吞过程)标记的外泌 体的摄取作用进行了观察,发现 PC12 细胞对外泌 体的摄取作用依赖胞吞途径,而胞吞过程具有温度 依赖性,采用低温孵育细胞的方法能够抑制温度依赖的胞吞途径^[13]。2016 年,Kusuma 等^[14] 发现在 4 ℃条件下,人血管内皮细胞对于外泌体的摄取作 用下降 80%。Huang 等^[5] 采用 37 ℃和4 ℃两种 条件下将 DPSCs 和骨髓间充质干细胞与 DPSCs 外 泌体进行共培养,结果发现4 ℃条件下,两者对 DPSCs外泌体的摄取能力明显下降,与本研究的结 果一致。

图 5 胞吞抑制剂对 SCAP 摄取外泌体作用影响的流式细胞分析结果

Figure 5 Role of different endocytosis inhibitors in the uptake of DPSCs derived exosomes by SCAP in flow cytometry

3.3 SCAP 摄取外泌体的介导途径

本研究发现采用胞吞抑制剂 CPZ、Genistein、 LY294002 处理 SCAP 后,SCAP 对 DPSCs 外泌体的 摄取能力有明显下降。细胞胞吞途径主要有以下4 种,网格蛋白介导的胞吞途径、小窝蛋白介导的胞吞 途径、巨胞饮作用和吞噬作用,其中吞噬作用主要是 一些具有特殊功能的细胞如巨噬细胞、中性粒细胞、 单核细胞才会表达的生物学行为,因此本研究主要 采用 CPZ、Genistein、LY294002 三种胞吞抑制剂抑 制上述除吞噬作用外的三条胞吞途径,研究 SCAP 摄取 DPSCs 外泌体的介导途径。本研究选取的 CPZ(10 µmol/L)、Genistein(200 µmol/L)、 LY294002(50 μmol/L) 经过 Tian 等^[12] 采用钙黄绿 素细胞活性分析法检测发现三者对细胞活性无明显 影响。2014 年,Tian 等^[15] 对 PC12 细胞摄取外泌体 的机制的研究发现网格蛋白介导的胞吞途径和巨胞 饮作用在 PC12 细胞摄取外泌体的过程中有重要作 用,但该过程不依赖小窝蛋白依赖的胞吞途径。 2016 年 Huang 等^[5] 经体外研究发现,DPSCs 对 DPSCs外泌体的摄取依赖小窝蛋白介导的胞吞途 径,而不依赖网格蛋白介导的胞吞途径。上述研究 与本研究的结果不完全一致,这可能与不同的细胞 对外泌体的摄取机制不同有关。2018 年,Horibe 等^[16]对人非小细胞肺癌细胞系(A549)、人结肠癌

细胞(HCT116、COLO205) 等细胞对同为 A549 细胞 来源的外泌体的吞噬过程的研究发现,抑制胞吞途 径可以抑制细胞对外泌体的摄取作用,且 COLO205 细胞吞噬外泌体同时依赖网格蛋白介导的胞吞途径 和小窝蛋白依赖的胞吞途径,HCT116 细胞则仅依 赖网格蛋白介导的胞吞途径,而 A549 不依赖上述 两条途径,提示即使外泌体来源相同,不同细胞摄取 外泌体时依赖的胞吞途径也可能存在差异。

综上所述,本研究发现 SCAP 能够摄取 DPSCs 外泌体,低温环境可影响该摄取过程,SCAP 摄取外 泌体主要依赖网格蛋白介导的胞吞途径、小窝蛋白 依赖的胞吞途径和巨胞饮途径,为进一步研究 DPSCs外泌体对 SCAP 的作用提供了实验依据。

参考文献

- [1] Vlassov AV, Magdaleno S, Setterquist R, et al. Exosomes: Current knowledge of their composition, biological functions, and diagnostic and therapeutic potentials [J]. Biochim Biophys Acta, 2012, 1820(7): 940-948.
- [2] Johnstone RM, Mathew A, Mason AB, et al. Exosome formation during maturation of mammalian and avian reticulocytes: Evidence that exosome release is a major route for externalization of obsolete membrane proteins [J]. J Cell Physiol, 1991, 147(1): 27-36.
- [3] Raposo G , Nijman HW , Stoorvogel W , et al. B lymphocytes secrete antigen-presenting vesicles [J]. J Exp Med , 1996 , 183 (3): 1161 - 1172.
- [4] Valadi H, Ekstrom K, Bossios A, et al. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells [J]. Nat Cell Biol, 2007, 9 (6): 654-672.
- [5] Huang CC, Narayanan R, Alapati S, et al. Exosomes as biomimetic tools for stem cell differentiation: Applications in dental pulp tissue regeneration [J]. Biomaterials, 2016, 111: 103 – 115.
- [6] Xian XH, Gong QM, Li C, et al. Exosomes with highly angiogenic potential for possible use in pulp regeneration [J]. J Endod, 2018, 44(5): 751-758.

- $[\ 7\]$ Liu JY , Chen X , Yue L , et al. CXC chemokine receptor 4 is expressed paravascularly in apical papilla and coordinates with stromal cell-derived factor-I α during transmigration of stem cells from apical papilla [J]. J Endod , 2015 , 41(9) : 1430 1436.
- [8] 刘敬一, 邹晓英, 陈雪, 等. 脂多糖对人根尖牙乳头干细胞中 基质细胞衍生因子1表达的影响[J]. 中华口腔医学杂志, 2015,50(6): 346-351.
- [9] Lotvall J, Hill AF, Hochberg F, et al. Minimal experimental requirements for definition of extracellular vesicles and their functions: A position statement from the International Society for Extracellular Vesicles [J]. J Extracell Vesicles , 2014, 3: 26913.
- [10] Pivoraite U , Jarmalaviciute A , Tunaitis V , et al. Exosomes from human dental pulp stem cells suppress carrageenan-induced acute inflammation in mice [J]. Inflammation , 2015 , 38(5): 1933 – 1941.
- [11] Sokolova V , Ludwig AK , Hornung S , et al. Characterisation of exosomes derived from human cells by nanoparticle tracking analysis and scanning electron microscopy [J]. Colloids Surf B Biointerfaces , 2011 , 87(1): 146 – 150.
- [12] Tian T , Zhu YL , Hu FH , et al. Dynamics of exosome internalization and trafficking [J]. J Cell Physiol , 2013 , 228(7): 1487-1495.
- [13] He ZL, Liu KZ, Manaloto E, et al. Cold atmospheric plasma induces ATP-dependent endocytosis of nanoparticles and synergistic U373MG cancer cell death [J]. Sci Rep , 2018, 8(1): 5298.
- [14] Kusuma RJ, Manca S, Friemel T, et al. Human vascular endothelial cells transport foreign exosomes from cow's milk by endocytosis[J]. Am J Physiol Cell Physiol, 2016, 310(10): C800 – C807.
- [15] Tian T , Zhu YL , Zhou YY , et al. Exosome uptake through clathrin-mediated endocytosis and macropinocytosis and mediating miR-21 delivery [J]. J Biol Chem , 2014 , 289(32): 22258 - 22267.
- [16] Horibe S , Tanahashi T , Kawauchi S , et al. Mechanism of recipient cell-dependent differences in exosome uptake [J]. Bmc Cancer , 2018 , 18(1): 47.

(2019-10-10 收稿) (本文编辑: 刘淑萍)