基于基因诊断的主动脉外科治疗现状与展望
薛超 孙维勋 易定华 俞世强

【摘要】遗传性主动脉疾病是一类与基因突变相关的主动脉疾病，临床表现复杂，由多种导致，手术干预时机和
术方式也不同，根据临床表现无法鉴别，基因诊断可以疾病诊断提供依据，指导疾病治疗。本文对遗传性主动脉疾病基因诊断
现状以及基因诊断对于疾病的遗传性主动脉疾病外科治疗指导意义进行了综述。

【关键词】基因诊断；遗传性主动脉疾病；外科治疗

Current status and prospects of surgery treatment for aortic disease based on genetic diagnosis
XUE Chao, DUAN Wei-xun, YI Ding-hua, YU Shi-qiang. Department of Cardiovascular Surgery, Xijing Hospital, Air Force Medical University, Xi'an 710032, Shaanxi, China.

【Abstract】Hereditary aortic disease is a kind of aortic disease associated with gene mutation. It is clinically characterized as aortic aneurysm/dissease. The timing and surgical methods of surgical intervention are different due to different diseases, but it cannot be identified based on
clinical manifestations. Genetic diagnosis could confirm a diagnosis of the disease and be instructive for the disease treatment. It is reviewed the current status of genetic diagnosis of hereditary aortic diseases and the significance of genetic diagnosis for the surgical treatment of major
hereditary aortic diseases.

【Key Words】genetic diagnosis; hereditary aortic diseases; surgical treatment

常见的主动脉疾病包括主动脉瘤，主动脉夹层，主动脉瘤内血肿，主动脉瘤溃疡和主动脉粥样硬化。其中主动
动脉瘤和主动脉夹层发生破裂风险较高，且在发生破裂或夹层等灾难性后果之前并没有明显症状。据流行病学统计，主动
动脉瘤相关的死亡约占全球死亡的1-2%。由于主动脉破裂风险高，所以需要通过手术置换病变血管避免发生主动脉
破裂死亡，但破裂时机未知，手术干预时机也是主动脉外科中经常面临的一个问题。通常情况下，患者主动脉直
径达到5.0-5.5 cm 时，建议进行预防性手术干预。但这样
单纯定义的干预时机较为局限，因为多达60%的急性A型
主动脉夹层在主动脉直径<5.5 cm 时即发生了破裂。所
以研究人员希望通过对主动脉疾病相关的疾病的研究为
主动脉疾病外科治疗提供理论依据，自1954年Vesalius
描述了主动脉壁的正常结构到1991年Dietz明确
FBN1基因突变导致马凡综合征，人们对于主动脉疾病的研究经历了组织到基因的过程，而随着研究的不断进展，除
FBN1外，TGFBR1, SMAD3, COL3A1, ACTA2, MYH11, MYLK, PRKGI, SMA4, NOTCH1等多个基因也被证实
与主动脉疾病疾病密切关系。遗传性主动脉疾病主要分
为综合征和非综合征型，其中综合征包括了马凡综合征
（Marfan syndrome, MFS）, Loeys-Dietz综合征（Loeys-Dietz syndrome, LDS）, 马凡综合征型
(Ehlers-Danlos syndrome,EDS), 非综合征型则包含主动脉颈动脉夹层畸形和
家族性胸主动脉瘤/夹层，而各个疾病有着对应的基因突变，
具体如表1所示。越来越多临床研究发现，在不同的疾病主
动脉瘤发生夹层破裂的时机不同，需要干预的时机、术方式
也不同，而这一类疾病临床表现比较类似，通过临床症状通
常难以鉴别，因此人们将目光转向基因诊断。基因诊断可
以作为遗传性主动脉疾病诊断提供依据，从而为主动脉疾病治疗
提供理论依据。

表1 常见的主动脉疾病及其对应的致病基因

<table>
<thead>
<tr>
<th>综合征型</th>
<th>致病基因</th>
</tr>
</thead>
<tbody>
<tr>
<td>FBN1</td>
<td>肿瘤形成</td>
</tr>
<tr>
<td>TGFBR1</td>
<td>有助于疾病形成</td>
</tr>
<tr>
<td>SMAD3</td>
<td>有助于疾病形成</td>
</tr>
<tr>
<td>COL3A1</td>
<td>有助于疾病形成</td>
</tr>
<tr>
<td>ACTA2</td>
<td>有助于疾病形成</td>
</tr>
<tr>
<td>MYH11</td>
<td>有助于疾病形成</td>
</tr>
<tr>
<td>MYLK</td>
<td>有助于疾病形成</td>
</tr>
<tr>
<td>PRKGI</td>
<td>有助于疾病形成</td>
</tr>
<tr>
<td>SMA4</td>
<td>有助于疾病形成</td>
</tr>
<tr>
<td>NOTCH1</td>
<td>有助于疾病形成</td>
</tr>
</tbody>
</table>

1 主动脉疾病基因诊断现状

通常情况下临床上通过对一些具有表征特征的患者进行
Sanger测序常能快速找到致病基因。但实际上主动脉疾病相
关的基因突变的表型有明显重叠，伴随显性不全，所以临
床上很多患者不能根据基因型-表型的对应关系去做针对性
的Sanger测序。近年来随着基因测序技术的不断发展，下一
代测序(next generation sequencing, NGS)技术由于具有能够
一次性检测多个基因从而快速高效的发现致病突变的优势进
入人们视线。其中全外显子组测序(whole exome sequencing,
WES)和靶向目标基因测序(targeted panel sequencing, TPS)
是NGS的多种形式，WES能够对基因组所有蛋白编码基因
进行检测，不仅能发现已知致病基因的突变，而且能发现
新的致病基因。而TPS只针对感兴趣的基因进行检测，较
基金项目：国家重大研究计划项目（2016YFC1301900）
国家自然科学基金（81770373, 81570230）
社会发展领域（2017ZX09H10109-05）
作者单位：710032 西安市 空军军医大学 西京医院 心血管外科
通讯作者：孙维勋 Email:duanweixun@126.com
DOI:10.16563/j.cnki.1671-6272.2018.08.003
WES 花费低，耗时少，在临床诊断运用上更具前景。针对遗传性主动脉疾病的基因检测，现在临床上通常采用基因组合（gene panel）的方法，即用二代测序的方法对疾病相关的若干基因的外显子及其侧翼序列进行检测，查找致病性点突变或较小的插入/缺失。国内外市场已出现多个检测主动脉疾病 gene panel 试剂盒，包含的基因从几个到十几个不等。例如 Hicks 等就报道了一个包含检测马凡综合征、Loeys-Dietz 综合症、动脉瘤 - 骨关节炎综合征以及家族性胸主动脉瘤相关基因 (ACTA2, COL3A1, TGFBR1, TGFBR2, SMAD3, TGFBR2, MYLK, MYH11, PRKG1) 的主动脉疾病的基因检测方式。

2 基因诊断在主动脉疾病外科治疗作用

3 马凡综合征

MFS 是最常见的遗传性疾病，为常染色体显性遗传，人群中发病率 1:3000-1:5000[10]，MFS 是编码细胞外基质蛋白 FBN1 基因突变引起的，病变累及多个系统，在骨骼系统上表现为身材高大、四肢修长和脊柱侧弯，在眼眶上表现为晶状体后缘水肿、心脏血管系统异常表现在主动脉瘤和主动脉夹层是导致 MFS 患者死亡的最主要原因。“修版 Genth 标准” 是目前国际上关于 MFS 的最新版诊断标准，“标准中将主动脉根部瘤/夹层和晶状体缺陷作为主要的标准，同时在标准中强调了分子诊断在 MFS 诊断中重要作用。越来越多的临床数据显示，MFS 患者在主动脉直径<5.5 cm 发生急性破裂风险比其他动脉瘤患者高[10]。所以要在 2010 年美国胸主动脉疾病诊断指南建议确诊 MFS 后 6 个月内复查超声心动图，确定主动脉根部和升主动脉直径，如果最大主动脉直径为 4.5 cm 或更粗，则应考虑进行更频繁的影像学检查。

在人群中发病率 1:3000-1:5000[10]，MFS 是编码细胞外基质蛋白 FBN1 基因突变引起的，病变累及多个系统，在骨骼系统上表现为身材高大、四肢修长和脊柱侧弯，在眼眶上表现为晶状体后缘水肿、心脏血管系统异常表现在主动脉瘤和主动脉夹层是导致 MFS 患者死亡的最主要原因。“修版 Genth 标准” 是目前国际上关于 MFS 的最新版诊断标准，“标准中将主动脉根部瘤/夹层和晶状体缺陷作为主要的标准，同时在标准中强调了分子诊断在 MFS 诊断中重要作用。越来越多的临床数据显示，MFS 患者在主动脉直径<5.5 cm 发生急性破裂风险比其他动脉瘤患者高[10]。而如果最大主动脉直径为 4.5 cm 或更粗，则应考虑进行更频繁的影像学检查。
表2 不同诊断中马凡综合征患者主动脉手术干预时机

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>主动脉瘤直径</td>
<td>直径>50 mm</td>
<td>直径>50 mm</td>
<td>直径>5.0 cm</td>
<td>直径>50 mm</td>
<td>直径>45 mm</td>
</tr>
<tr>
<td>主动脉瘤直径</td>
<td>直径>45mm（合并左室流出道病变）</td>
<td>直径>45mm（合并左室流出道病变）</td>
<td>直径>45mm（合并左室流出道病变）</td>
<td>直径>45mm（合并左室流出道病变）</td>
<td>直径>45mm（合并左室流出道病变）</td>
</tr>
<tr>
<td>主动脉瘤直径</td>
<td>直径>45mm（合并右室流出道病变）</td>
<td>直径>45mm（合并右室流出道病变）</td>
<td>直径>45mm（合并右室流出道病变）</td>
<td>直径>45mm（合并右室流出道病变）</td>
<td>直径>45mm（合并右室流出道病变）</td>
</tr>
<tr>
<td>主动脉瘤直径</td>
<td>直径<55 mm</td>
<td>直径<5.5-6.0 cm</td>
<td>直径<5.5-6.0 cm</td>
<td>直径<5.5-6.0 cm</td>
<td>直径<5.5-6.0 cm</td>
</tr>
</tbody>
</table>

注：a：扩张速度超过0.5 cm/year，无家族史，主动脉瘤迅速扩大。
b：主动脉瘤迅速扩大的患者。

c：主动脉瘤长期稳定在5-10mm，主动脉瘤稳定。

5. MFS患者早。研究最早发现LDS与转化生长因子-β受体（transforming growth factor-β receptor 1, TGFBR1）及转化生长因子-β受体2（transforming growth factor-β receptor 2, TGFBR2）基因突变相关。随着研究不断进展，转化生长因子-β2配体（transforming growth factor β 2 ligand gene, TGFBR2）、转化生长因子β3配体（transforming growth factor β 3 ligand gene, TGFBR3）及SMAD3基因突变也被认为与MFS发病密切相关。LDS综合表现根据基因突变分为5型，TGFBR1, TGFBR2, SMAD3, TGFBR3及TGFBR2和TGFBR3突变分别对应LDS第1型到5型。对确认有包括TGFBR1, TGFBR2突变的LDS患者2010年美国胸主动脉疾病诊疗指南建议在初次诊断后6个月后进行主动脉成像，以确定主动脉病变情况。MFS发病风险较高，需根据家族史或遗传主动脉动脉瘤家族史进行主动脉手术干预。

4. 4 Loesys-Dietz综合征

LDS是另一种常染色体显性遗传疾病，2005年Loesys首次描述了这种以心肌病、心力衰竭、异常心室肌与骨肌发育、临床特征的临床症状。LDS与MFS有相似特征，但主动脉病变外，LDS患者其它动脉也比较容易动脉瘤、动脉扭曲，且动脉瘤进展较快，患者平均发病/死亡年龄（26岁）比MFS患者早。研究最早发现LDS与转化生长因子-β受体1（transforming growth factor-β receptor 1, TGFBR1）及转化生长因子-β受体2（transforming growth factor-β receptor 2, TGFBR2）基因突变相关。随着研究不断进展，转化生长因子-β2配体（transforming growth factor β 2 ligand gene, TGFBR2）、转化生长因子β3配体（transforming growth factor β 3 ligand gene, TGFBR3）及SMAD3基因突变也被认为与MFS发病密切相关。LDS综合表现根据基因突变分为5型，TGFBR1, TGFBR2, SMAD3, TGFBR3及TGFBR2和TGFBR3突变分别对应LDS第1型到5型。对确认有包括TGFBR1, TGFBR2突变的LDS患者2010年美国胸主动脉疾病诊疗指南建议在初次诊断后6个月后进行主动脉成像，以确定主动脉病变情况。MFS发病风险较高，需根据家族史或遗传主动脉动脉瘤家族史进行主动脉手术干预。

4. 4 Loesys-Dietz综合征

LDS是另一种常染色体显性遗传疾病，2005年Loesys首次描述了这种以心肌病、心力衰竭、异常心室肌与骨肌发育、临床特征的临床症状。LDS与MFS有相似特征，但主动脉病变外，LDS患者其它动脉也比较容易动脉瘤、动脉扭曲，且动脉瘤进展较快，患者平均发病/死亡年龄（26岁）比MFS患者早。研究最早发现LDS与转化生长因子-β受体1（transforming growth factor-β receptor 1, TGFBR1）及转化生长因子-β受体2（transforming growth factor-β receptor 2, TGFBR2）基因突变相关。随着研究不断进展，转化生长因子-β2配体（transforming growth factor β 2 ligand gene, TGFBR2）、转化生长因子β3配体（transforming growth factor β 3 ligand gene, TGFBR3）及SMAD3基因突变也被认为与MFS发病密切相关。LDS综合表现根据基因突变分为5型，TGFBR1, TGFBR2, SMAD3, TGFBR3及TGFBR2和TGFBR3突变分别对应LDS第1型到5型。对确认有包括TGFBR1, TGFBR2突变的LDS患者2010年美国胸主动脉疾病诊疗指南建议在初次诊断后6个月后进行主动脉成像，以确定主动脉病变情况。MFS发病风险较高，需根据家族史或遗传主动脉动脉瘤家族史进行主动脉手术干预。
保守治疗。仅有少数关于血管型 EDS 患者介入或手术的报道，腔内隔膜虽然有短期成功报道，但支架内斑块区血管易发生破裂而导至患者猝死，目前血管型 EDS 认为是腔内隔膜的累及，对于开口手术，目前被认为必须手术时，在术前仔细检测患者血小板功能，且术前合用他汀类药物，必要时可重建反流，可使用穿刺来减少缝合，但与国内进行加强。

6 家族性胸主动脉瘤 / 夹杂
家族性胸主动脉瘤 / 夹杂是另一种常见的非综合征遗传性主动脉疾病。MYH11、MYLK、MYL2、PRKG1、MIFAP5 基因突变是常见病因，这些基因主要是与平滑肌细胞骨架结构功能相关。家族性胸主动脉瘤 / 夹杂临床常见的表现为动脉瘤累及主动脉根部和升主动脉，易发生急性动脉瘤破裂。并且通常上可能合并有窦状腹膜、先天性散膜、胸主动脉、肠扭转等其他症状。2010 年美国胸主动脉疾病指南和 2014 年欧洲心脏病学会主动脉疾病指南均建议考虑家族性胸主动脉瘤 / 夹杂手术时机：建议在主动脉根部或升主动脉直径 < 5.5mm 时行手术干预。

7 主动脉瓣二瓣化畸形
主动脉瓣二瓣化畸形是另一个临床上常见的遗传相关的主动脉疾病，与 MAT2A、NOTCH1 变异相关。主动脉瓣二瓣化畸形不仅仅影响到主动脉瓣，主动脉瓣二瓣化畸形患者具有高风险胸主动脉瘤的可能性，比正常人高 9 倍。而且除
8 展望

遗传性主动脉疾病是多由基因突变导致众多主动脉疾病的总称，在临床均表现为主动脉瘤或主动脉夹层，主动脉疾病尤其在发展成为主动脉夹层后，患者死亡率高，手术风险高，所以临床的主要诊断及早期干预意义重大。但国内外对主动脉疾病类型不同，疾病需要干预的时机不同，从而使得疾病的早期干预不能完全一致。目前，主动脉疾病的预后有良好的，应尽早进行早期干预，如发现早期死亡的预后，手术相关内容尚未见文章。

我们相信随着基因测序技术的进步以及相关研究的不断深入，基因诊断将为主动脉疾病的治疗提供极大的临床意义。

